

情報セキュリティと分散型 AI の融合: データのプライバシーとユーティリティの保護

LE TRIEU PHONG セキュリティ基盤研究室 主任研究員

https://market.us/report/federated-learning-market/

●IEEE Trans. Inf. Forensics Secur. (2018)に掲載

●Google Scholarによる引用数 1300以上

●2023 IEEE SPS Best Paper Award 受賞

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai:

Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. IEEE Trans. Inf. Forensics Secur. (2018)

DeepProtect (2018)以降の研究

4

Central server (with possibly malicious activities) (Store) When receiving a ciphertext E from a distributed trainer, store it. (Share) When being requested from a distributed trainer, send E to that trainer. Initially, when E does not exist, send \perp . $E = \mathsf{Enc}_K(W' \circ V')$ $E = \mathsf{Enc}_K(W' \circ V')$ $\mathsf{Dec}_K(E)$ $\mathsf{Dec}_K(E)$ $W' \circ V'$ $W' \circ V'$ $W \circ V$ $W \circ V$ vertical horizontal vertical horizontal learning part learning part learning part learning part Local weight/prediction results Local weight/prediction results Local dataset 1 Local dataset NDistributed Trainer 1 Distributed Trainer N(e.g. Hospital 1) (e.g. Hospital N)

認証付き暗号に より、暗号文を 変える攻撃者を 対応!

Le Trieu Phong: Secure deep learning for distributed data against malicious central server. PLoS ONE 17(8), 2022

DeepProtect (2018)以降の研究

Central server (with possibly malicious activities)

(Store) When receiving a ciphertext E from a distributed trainer, store it.

(Share) When being requested from a distributed trainer, send E to that trainer. Initially, when E does not exist, send \perp .

ー部のパラメー タは、別のデー タセットの学習 結果でもOK!

オープンデータを用いた実験

1.MRI 2.X-Ray画像

0 173k	-56.4 2.45	-72.7 22.1	-48.3 9.38	-5.68 16.9	-114
0	-1.3598071336738	-0.0727811733098497	2.53634673796914	1.37815522427443	-0.33832
0	1.19185711131486	0.26615071205963	0.16648011335321	0.448154078460911	0.060017
1	-1.35835406159823	-1.34016307473609	1.77320934263119	0.379779593034328	-0.50319

Input Chest X-Ray Image

CheXNet 121-layer CNN

Output Pneumonia Positive (85%)

MRI: <u>http://www.riteh.uniri.hr/~istajduh/projects/kneeMRI/</u> X-Ray: <u>https://stanfordmlgroup.github.io/projects/chexnet/</u> Credit Card: <u>https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud</u>

MRI1:

- スタンフォード大学医療センターで取得、
- 1,370 件の膝 MRI 検査。 •
- ラベルは臨床レポートから手動で抽出。

MRI2:

- クロアチアの病院センターで取得。
- 917件の膝 MRI 検査。 \bullet

目的:膝の前十字靭帯断裂 (ACL tears)を推測

MRIデータ

MRNet:我々のシステムの部品

Le Trieu Phong, PLoS ONE 17(8), 2022

MRNet:我々のシステムの部品

我々のシステムを用い、MRIに関わる実験結果

Area-under-the-curve (AUC) scores of learning methods on MRI datasets.

Paper	Method	AUC score	
Stajduhar et al. [15]	Support Vector Machine	0.894 MRI2 の	
Bien et al. [14]	Neural Network	0.824 テスト	
Bien et al. [14]	Neural Network	0.911 セットで 予測	
我々のシステム (Train on MRI1 + MRI2)	Neural Network	0.924	

Le Trieu Phong: Secure deep learning for distributed data against malicious central server. PLoS ONE 17(8), 2022 Le Trieu Phong, Tran Thi Phuong, Lihua Wang, Seiichi Ozawa: Frameworks for Privacy-Preserving Federated Learning. IEICE Trans. Inf. Syst. 107(1): 2-12(2024)

学習の詳細 (MRIデータ)

Model (MRNet)	6,100万個のパラメータ (ハードディスクに234MB)
CBC-encrypt-then-mac	3 秒
Training on GPU (one epoch)	13 秒

X-Rayデータ: NIH ChestX-ray14データセット

NEWS RELEASES

Media Advisory

Wednesday, September 27, 2017

NIH Clinical Center provides one of the largest publicly available chest x-ray datasets to scientific community

The dataset of scans is from more than 30,000 patients, including many with advanced lung disease.

https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community

<u>ChestX-ray14 データセット</u>

- ・14の異なる胸部疾患に個別にラベル付けされる。
- 112,120 枚の正面胸部 X 線画像がある。

	AUCスコア((高い方が良い)	_(Stanford大学)	
Pathology	Wang et al. (2017)	Yao et al. (2017)	CheXNet (ours)	
Atelectasis	0.716	0.772	0.8094	
Cardiomegaly	0.807	0.904	0.9248	
Effusion	0.784	0.859	0.8638	Input
Infiltration	0.609	0.695	0.7345	Chest X-Ray Image
Mass	0.706	0.792	0.8676	CheXNet
Nodule	0.671	0.717	0.7802	121-layer CNN
Pneumonia	0.633	0.713	0.7680	Output
Pneumothorax	0.806	0.841	0.8887	Pneumonia Positive (85%)
Consolidation	0.708	0.788	0.7901	
Edema	0.835	0.882	0.8878	
Emphysema	0.815	0.829	0.9371	
Fibrosis	0.769	0.767	0.8047	
Pleural Thickening	0.708	0.765	0.8062	
Hernia	0.767	0.914	0.9164	

Table 2. CheXNet outperforms the best published results on all 14 pathologies in the ChestX-ray14 dataset. In detecting Mass, Nodule, Pneumonia, and Emphysema, CheXNet has a margin of >0.05 AUROC over previous state of the art results.

https://stanfordmlgroup.github.io/projects/chexnet/

Abb Ghest X-ray 14 に関わる実験結果

	•	•			
病理	Wang et al. [13]	Yao et al. [70]	Zech [71]	我々のシステム	CheXNet [3]
Atelectasis	0.716	0.772	0.8161	0.8176	0.8094
Cardiomegaly	0.807	0.904	0.9105	0.9143	0.9248
Effusion	0.784	0.859	0.8839	0.8842	0.8638
Infiltration	0.609	0.695	0.7077	0.7098	0.7345
Mass	0.706	0.792	0.8308	0.8494	0.8676
Nodule	0.671	0.717	0.7748	0.7829	0.7802
Pneumonia	0.633	0.713	0.7651	0.7675	0.7680
Pneumothorax	0.806	0.841	0.8739	0.8762	0.8887
Consolidation	0.708	0.788	0.8008	0.8077	0.7901
Edema	0.835	0.882	0.8979	0.8931	0.8878
Emphysema	0.815	0.829	0.9227	0.9340	0.9371
Fibrosis	0.769	0.767	0.8293	0.8258	0.8047
Pleural Thickening	0.708	0.765	0.7860	0.7851	0.8062
Hernia	0.767	0.914	0.9010	0.9087	0.9164
Average	0.7381	0.8027	0.8358	0.8397	0.8414
Securely distributed training?	no	no	no	yes	no

Area-under-the-curve (AUC) scores of learning methods on ChestX-ray14.

https://doi.org/10.1371/journal.pone.0272423.t004

Le Trieu Phong, PLoS ONE 17(8), 2022

元のデータを分け、4 組織を想定

学習の詳細 (NIH ChestX-ray14 データ)

Model (DenseNet-121)約 700 万個のパラメータ
(ハードディスク 28 MB)CBC-encrypt-then-mac0.2 秒Training on GPU (one epoch)60 秒

Le Trieu Phong, Tran Thi Phuong, Lihua Wang, Seiichi Ozawa: Frameworks for Privacy-Preserving Federated Learning. IEICE Trans. Inf. Syst. 107(1): 2-12(2024)

クレジットカード不正行為の検出のデータセット

# Time	=	# V1	=	# V2	=	# V3	=	# V4	=	# V5
Number of seconds		may be result of a	PCA							
elapsed between thi	S first	Dimensionality red	uction							
transaction in the da	ataset	and sensitive featu	ires(v1-							
		v28)								
diamb <mark>i.</mark> di	dilla.							.		
- haad all all haad a					i					
0	173k	-56.4	2.45	-72.7	22.1	-48.3	9.38	-5.68	16.9	-114
0		-1.359807133673	8	-0.0727811733	098497	2.536346737969	914	1.378155224	27443	-0.33832
0		1.1918571113148	36	0.26615071205	5963	0.166480113353	321	0.448154078	460911	0.060017
1		-1.358354061598	323	-1.3401630747	/3609	1.773209342631	19	0.379779593	034328	-0.50319
1		-0.966271711572	2087	-0.1852260080	82898	1.792993339578	372	-0.86329127	5036453	-0.01030

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

- ヨーロッパのカード所有者によって行われた取引が含まれている。
- ・284,807件の取引のうち492件の不正行為が発生した。
- ・ポジティブ クラス (詐欺) は全取引の 0.172% を占める。

クレジットカードのデータの実験結果

各学習参加者にある ニューラルネットワークの構成

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	64)	1984
dropout_1 (Dropout)	(None,	64)	0
dense_2 (Dense)	(None,	32)	2080
dropout_2 (Dropout)	(None,	32)	0
dense_3 (Dense)	(None,	1)	33
Total params: 4,097 Trainable params: 4,097 Non-trainable params: 0			

Le Trieu Phong, Tran Thi Phuong, Lihua Wang, Seiichi Ozawa: Frameworks for Privacy-Preserving Federated Learning. IEICE Trans. Inf. Syst. 107(1): 2-12(2024)

recall

17

- 連合学習には利点があるが、学習に伴うすべての課題(例:データの品質、データの標準化、システムの運用)に対処できるわけではない。
 連合学習の取り組みと非連合学習の取り組みの両方
- 連合学習の取り組みと非連合学習の取り組みの両方 が必要である。
- すべての技術的な疑問がまだ解決されているわけで はない。これからも、活発な研究開発となるだろう。